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1.1 Bayesian Learning and Probabilistic Graphical Model 2

1.1.1 Bayesian Graph Convolutional Neural Networks for Semi-Supervised
Classification

• Represent uncertainty of the underlying data during graph building

• Bayesian framework to account graph uncertainty

• Bayesian Neural Networks:

– Treat network weights as RVs

– Compute posterior by variational inference

• High-level Algorithm

– Train a graph generation model given the currently observed graph

– Sample graphs from the learned graph generation model

– Compute posterior of GCNN weights

– Average over multiple samples

• Performance boost on the citation dataset

• Tested robustness by attacking the graphs(slightly perturbing the graph topology)

• Conclusion

– Works well even With limited training data

– Resilient to graph attacks

– Can represent uncertainty

– Can incorporate a variety of other graph generation/learning algorithm
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1.1.2 Learning Logistic Circuits

• PSDD + SPN great at learning densities

• Just want to classify. No need to compute the joint distribution

• Probabilistic Circuits = Probabilistic analogue to logical circuits

• Logistic Circuit = Probabilistic Circuits + logistic function on final output

• How to learn the parameters of logistic circuits?

• First compute the active wires. Not all of them are active.

• Only consider them to reduce the amount of computation.

• Every LC can be reduce to an equivalent logistic regression⇒ Global Circuit Flow

• Even outperform CNNs in MNIST

• Converting PC to LC

– The true and false weights are combined into one weight

– The weight value is the log of the original ones.

• Highly interpretable: logical sentences become nodes

• Scalability: bottleneck in structure learning

1.1.3 Poster Spotlights

• Deep Convolutional SPN

– SPN can be represented using CNN

• Understanding VAEs in Fisher–Shannon Plane

– Fisher information and Shannon information are complementary to each other

• InfoVAE

– Modified the VAE objective to address few problems that VAE has

1.2 Multiagent Systems 1

1.2.1 Fair Knapsack

• Mind experiment

– Airline company has to choose what movies to ship in their in-plane enter-
tainment system

– Ask the customers what they prefer
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• Formal definition

– Voters V = {v1, v2, . . . , vn}
– Items A = {a1, a2, . . . , am}
– Fixed budget B

– Each item a has a cost c(a)

– The voters have their own utility ui for each item

– Find a subset(knapsack) S that c(S) ≤ B and u(S) is maximized

• Valuation Functions

– Fair knapsack: tries to be proportionally fair

uFair(S) =
∏
vi∈V

(1 +
∑
a∈S

ui(a))

– Diverse Knapasack

uDiv(S) =
∑
vi∈V

max
a∈A

ui(a)

– Individually Best Knapsack

uIB(S) =
∑
vi∈V

∑
a∈S

ui(a)

• Fairness comes with surprisingly high computational complexity.

1.2.2 Poster Spotlights

• Leveraging Observations in Bandits: Between Risks and Benefits

– Multiple agents plaing the same bandit problems

– Each agent can observe neighbours’ actions but not rewards

– Target-UCB: social-based optimism

• Learning to Teach in Cooperative MARL

– How to coordinate and selectively share local knowledge

– Phase I: Fixed teaching policy

– Phase II: Train teaching policy based on learning rate(?)

• Multi-Winner Contests for Strategic Diffusion in Social Networks

– Solicit as many efforts as possible from users in SN

– Credit to each player that contributed task efforts and has made successful
referrals
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– Diffusion rewards

– Allocate rewards proportionally

• General Robustness Evaluation of Incentive Mechanism Against Bounded Ratio-
nality Using Continuum-Armed Bandits

– Incentive mechanisms

– Robustness against bounded rationality of agents

– Margin calculator

• Message-Dropout: An Efficient Training Method for MA-DRL

– Drops messages and compensate it during execution phase

• Overcoming Blind Spots in the Real World

– Mismatch between simulation and real world

– Human feedback to solve blindspots

– Human demonstration data to identify influential features

– Deviation behaviors

2 Feburary 1st

2.1 Reinforcement Learning 2

2.1.1 State Abstractions as Compression in Apprenticeship Learning

• Abstraction: create a simple model of the environment, but perform well

• Compression vs. Value

• How small can we make the state space while preserving the performance?

• Computation complexity and sample complexity is proportional to the state space
size

• Rate–Distortion theory

– Source → Encoder → Decoder → Destination

– Rate: number of bits used in your representation

– Distortion: measured by some distortion metric

– Lower bound on the product of rate and distortion

– Can be solved by Blahut–Arimoto algorithm

• Information Bottleneck Theory

– Relevance variable
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– Latent representation must capture important features

• Given expert demonstrations, what’s the best state abstraction?

• Devised an objective easier to optimize

2.1.2 Towards Better Interpretability in DQNs

• Interpretability

– Local explanation: Given input

– Global explanation: Regardless of input

• Keys initialized randomly and learned via backprop

• Loss functions

– Bellman Error

– Distributional Error

– Reconstruction Error

– Diversity Error

2.1.3 On Reinforcement Learning for Full-length Game of Starcraft

• Not much previous works on full-length SC games

• Huge state and action space + Long term sparse rewards ⇒ Makes things super
difficult

• Leveraged different level of abstractions

• Examples of low-level abstractions

– Build(what, where)

– Produce(what)

• Controller chooses what sub-policy to execute

• Macro-actions learned from human demonstrations

2.2 Reinforcement Learning 3

2.2.1 Fully Convolutional Network with Multi-Step RL for Image Processing

• Contributions

– RL with pixel-wise rewards

– Novel approach for image processing tasks

– Comparable with SOTA
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• Each pixel and its neighbors’ value is considered as a state

• Actions are conventional tools for image processing, e.g. box filter

• Number of agents too large to deploy existing MARL approaches

• Modified A3C to be fully convolutional(?)

• Reward map convolution(?) to consider future states of neighbor pixels

2.2.2 Model-Free IRL using MLE

• Bayesian IRL

• Contributions

– Model-Free

– Q-averaging, Q-softmax

– Real-world freeway merging problems

• Stationary policy assumption

logL(θ; τ) = log
N∏
t=1

πθ(st, at) =
N∑
t=1

log πθ(st, at)

2.2.3 SUM: Self-Supervised Mixture-of-Experts by Uncertainty Estimation

• Key ideas

– Uncertainty Estimation

– Mixture-of-Experts

– Self-supervision

– Decayed Mask ER

• Uncertainty-Enhanced Muti-head DDPG

– Multi-head: Q-value + Q-variance

– Trained by optimizing negative-log-likelihood

– Robust to task shift

• Mixture-of-Experts

– Gating function to select the expert

– Trained in a self-supervised manner

• Self-supervised learning

– Ground truth constructed by softmax gating(?)
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– Train gating function using MSE

– Activate experts with high uncertainty

– Stopped when an expert masters a task: super high mean and low variance

2.2.4 Off-Policy DRL by Bootstrapping the Covariate Shift

• Off-policy TD esitmation operators may diverge (work by Baird)

• Covariate shift

• Hallak proposed an operator whose fixed point is the covariant shift

– Every scalar multiple is a fixed point

– Projection into the simplex to make it unique

• Discounted covariate shift that has single nondegenerate FP

• If γ is small, we have convergence guarantees

• Experiments with random behavior policy

• Modified C51 to have two heads: one for value, another for covariate shift

• Used covariate shift to modify the sampling rates

2.2.5 Model Learning for Lookahead Exploration in Continuous Control

• Random exploration can be unsafe and data collections may be expensive

• Problems of HRL

– low-level skill set may not contain key low-level policies

– modularization degrades performance

• Look-ahead exploration

• Coarse skill dynamics model: predict terminal state using current state and goal

• Able to recover from bad skill sets

• Can perform well even when the state dynamics model is bad
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