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1.1 Bayesian Learning and Probabilistic Graphical Model 2

1.1.1 Bayesian Graph Convolutional Neural Networks for Semi-Supervised
Classification

e Represent uncertainty of the underlying data during graph building

Bayesian framework to account graph uncertainty

Bayesian Neural Networks:
— Treat network weights as RVs

— Compute posterior by variational inference

High-level Algorithm
— Train a graph generation model given the currently observed graph
— Sample graphs from the learned graph generation model
— Compute posterior of GCNN weights

— Average over multiple samples

Performance boost on the citation dataset

Tested robustness by attacking the graphs(slightly perturbing the graph topology)

Conclusion

Works well even With limited training data

Resilient to graph attacks

Can represent uncertainty

— Can incorporate a variety of other graph generation/learning algorithm



1.1.2 Learning Logistic Circuits

PSDD + SPN great at learning densities

Just want to classify. No need to compute the joint distribution

Probabilistic Circuits = Probabilistic analogue to logical circuits

Logistic Circuit = Probabilistic Circuits + logistic function on final output

How to learn the parameters of logistic circuits?

First compute the active wires. Not all of them are active.

Only consider them to reduce the amount of computation.

Every LC can be reduce to an equivalent logistic regression = Global Circuit Flow
Even outperform CNNs in MNIST

Converting PC to LC
— The true and false weights are combined into one weight

— The weight value is the log of the original ones.
Highly interpretable: logical sentences become nodes

Scalability: bottleneck in structure learning

1.1.3 Poster Spotlights

Deep Convolutional SPN
— SPN can be represented using CNN

Understanding VAEs in Fisher—Shannon Plane

— Fisher information and Shannon information are complementary to each other

InfoVAE
— Modified the VAE objective to address few problems that VAE has

1.2 Multiagent Systems 1
1.2.1 Fair Knapsack

Mind experiment

— Airline company has to choose what movies to ship in their in-plane enter-
tainment system

— Ask the customers what they prefer



e Formal definition

Voters V = {01, V2, - 7vn}

Items A = {a1,a2,...,am}

— Fixed budget B

— Each item a has a cost c(a)

— The voters have their own utility u; for each item

— Find a subset(knapsack) S that ¢(S) < B and u(S) is maximized

e Valuation Functions

— Fair knapsack: tries to be proportionally fair

— Diverse Knapasack

upiv(S) = Z max u;(a)

— Individually Best Knapsack

wp(S) = > > uia)

v, EV a€S

e Fairness comes with surprisingly high computational complexity.

1.2.2 Poster Spotlights

e Leveraging Observations in Bandits: Between Risks and Benefits
— Multiple agents plaing the same bandit problems
— Each agent can observe neighbours’ actions but not rewards

— Target-UCB: social-based optimism

e Learning to Teach in Cooperative MARL
— How to coordinate and selectively share local knowledge
— Phase I: Fixed teaching policy

— Phase II: Train teaching policy based on learning rate(?)

e Multi-Winner Contests for Strategic Diffusion in Social Networks
— Solicit as many efforts as possible from users in SN

— Credit to each player that contributed task efforts and has made successful
referrals



— Diffusion rewards
— Allocate rewards proportionally
e General Robustness Evaluation of Incentive Mechanism Against Bounded Ratio-
nality Using Continuum-Armed Bandits
— Incentive mechanisms
— Robustness against bounded rationality of agents

— Margin calculator

e Message-Dropout: An Efficient Training Method for MA-DRL

— Drops messages and compensate it during execution phase

e Overcoming Blind Spots in the Real World

Mismatch between simulation and real world

Human feedback to solve blindspots

Human demonstration data to identify influential features

Deviation behaviors

2 Feburary 1st

2.1 Reinforcement Learning 2
2.1.1 State Abstractions as Compression in Apprenticeship Learning

e Abstraction: create a simple model of the environment, but perform well

e Compression vs. Value

How small can we make the state space while preserving the performance?

Computation complexity and sample complexity is proportional to the state space
size

Rate-Distortion theory
— Source — Encoder — Decoder — Destination
— Rate: number of bits used in your representation
— Distortion: measured by some distortion metric
— Lower bound on the product of rate and distortion

— Can be solved by Blahut—Arimoto algorithm

e Information Bottleneck Theory

— Relevance variable



— Latent representation must capture important features
e Given expert demonstrations, what’s the best state abstraction?

e Devised an objective easier to optimize

2.1.2 Towards Better Interpretability in DQNs

o Interpretability
— Local explanation: Given input

— Global explanation: Regardless of input
e Keys initialized randomly and learned via backprop

e Loss functions
— Bellman Error

Distributional Error

Reconstruction Error

Diversity Error

2.1.3 On Reinforcement Learning for Full-length Game of Starcraft

e Not much previous works on full-length SC games

e Huge state and action space 4+ Long term sparse rewards = Makes things super
difficult

e Leveraged different level of abstractions

e Examples of low-level abstractions
— Build(what, where)
— Produce(what)

e Controller chooses what sub-policy to execute

e Macro-actions learned from human demonstrations

2.2 Reinforcement Learning 3
2.2.1 Fully Convolutional Network with Multi-Step RL for Image Processing
e Contributions
— RL with pixel-wise rewards

— Novel approach for image processing tasks
— Comparable with SOTA



Each pixel and its neighbors’ value is considered as a state

Actions are conventional tools for image processing, e.g. box filter

e Number of agents too large to deploy existing MARL approaches

Modified A3C to be fully convolutional(?)

Reward map convolution(?) to consider future states of neighbor pixels

2.2.2 Model-Free IRL using MLE
e Bayesian IRL
e Contributions
— Model-Free

— Q-averaging, Q-softmax

— Real-world freeway merging problems

e Stationary policy assumption
N N
log L(0; ) = log H To(st, ar) = Z log mg(st, ar)
t=1 t=1

2.2.3 SUM: Self-Supervised Mixture-of-Experts by Uncertainty Estimation

e Key ideas
— Uncertainty Estimation

— Mixture-of-Experts

Self-supervision
Decayed Mask ER

e Uncertainty-Enhanced Muti-head DDPG
— Multi-head: Q-value + Q-variance
— Trained by optimizing negative-log-likelihood
— Robust to task shift

e Mixture-of-Experts

— Gating function to select the expert

— Trained in a self-supervised manner

e Self-supervised learning

— Ground truth constructed by softmax gating(?)



— Train gating function using MSE
— Activate experts with high uncertainty

— Stopped when an expert masters a task: super high mean and low variance

2.2.4 Off-Policy DRL by Bootstrapping the Covariate Shift

Off-policy TD esitmation operators may diverge (work by Baird)
Covariate shift

Hallak proposed an operator whose fixed point is the covariant shift
— Every scalar multiple is a fixed point

— Projection into the simplex to make it unique
Discounted covariate shift that has single nondegenerate FP
If ~ is small, we have convergence guarantees
Experiments with random behavior policy
Modified C51 to have two heads: one for value, another for covariate shift

Used covariate shift to modify the sampling rates

2.2.5 Model Learning for Lookahead Exploration in Continuous Control

Random exploration can be unsafe and data collections may be expensive

Problems of HRL
— low-level skill set may not contain key low-level policies

— modularization degrades performance
Look-ahead exploration
Coarse skill dynamics model: predict terminal state using current state and goal
Able to recover from bad skill sets

Can perform well even when the state dynamics model is bad



